NPL-U7-3-245-R/C

HELLER, EHRMAN, WHITE & MCAULIFFE

A PARTNERSHIP INCLUDING PROFESSIONAL CORPORATIONS

333 BUSH STREET
SAN FRANCISCO, CALIFORNIA 94104-2878
TELECOPIER (415) 772-6268
TELEPHONE (415) 772-6000

4100 FIRST INTERSTATE CENTER 999 THIRD AVENUE SEATTLE, WASHINGTON 98104-4011 TELEPHONE (206) 447-0900 • TELECOPIER (206) 447-0849 1300 S. W. FIFTH AVENUE PORTLAND, OREGON 97201-5696 TELECOPIER (503) 241-0950 TELEPHONE (503) 227-7400

525 UNIVERSITY AVENUE FALO ALTO, CALIFORNIA 94301-1908 TELECOPIER (415) 324-0638 TELEPHONE (415) 326-7600

August 22, 1988

445 SOUTH FIGUEROA STREET
LOS ANGELES, CALIFORNIA 90071-1630
TELECOPIER (213) 612-7797
TELEPHONE (213) 689-0200

0542-101 8-22-88

Stephen A. Lingle Hazardous Site Evaluation Division (Attn: NPL Staff) Office of Emergency and Remedial Response U.S. Environmental Protection Agency 401 M Street SW Washington, D.C. 20460

RE: Comments on the Nomination of Tosco's Spokane Terminal to the NPL.

Dear Mr. Lingle:

These comments are submitted on behalf of Tosco Corporation, the current owner of the Spokane Terminal at the North Market Street Site in Spokane, Washington. On June 24, 1988, the site was proposed for inclusion on the National Priorities List (NPL). The comments are based on EPA's Hazard Ranking System (HRS) worksheets for the site. The references cited are to the supporting materials included with the HRS worksheets.

I. Waste Characteristics

A. Toxicity/Persistence

In the HRS worksheets, EPA evaluated lead and chromium, both of which were assigned maximum values for toxicity and persistence. The inclusion of chromium as an evaluated parameter is inappropriate for scoring purposes. Of the samples analyzed and reported by Golder Associates in HRS Reference 21, chromium values ranged from 8.1 to 12 mg/kg. Lead concentrations in the same samples ranged from 11 to 365 mg/kg. The relatively narrow range of chromium concentrations compared to lead suggests that the observed chromium represents background concentrations in the soil. Moreover, Bohn (1985) reports typical chromium concentrations in soils at 20 mg/kg with a range of 5 to 1,000 mg/kg. Thus, existing data indicate that chromium concentrations do not appear to be elevated onsite, despite its suggested presence as a contaminant through the identification of KO49 waste on TOSCO's 103(c) notification. HRS Reference 15.

USEPA SF 1520520

B. Hazardous Waste Quantity

EPA used the figure of "approximately 5,600 cubic feet" of slop oil emulsion solids (KO49 listed RCRA waste) and leaded tank bottoms (K052 RCRA listed waste) for calculating hazardous waste quantity. The figure is taken from Tosco's CERCLA section 103(c) "Notification of Hazardous Waste Site." HRS Reference 15. Because Tosco never operated the refinery, Tosco could only guess what wastes were disposed of on site and make a good faith estimate of total waste quantity for the 103(c) notification. As stated on the 103(c) Notification, based on Tosco's knowledge of historic refinery practices in general, Tosco "assumed that slop oil emulsion solids were at times disposed of at the waste oil dump facility at the site." The figure of 5,600 cubic feet does not represent an actual amount of waste sent to the oil lagoon, but is rather Tosco's rough estimate of the capacity of the portion of the lagoon on Tosco property. Similarly, Tosco does not know for certain that leaded tank bottoms were disposed of on the property. Rather, as stated on the 103(c) Notification, "it is probable that leaded tank bottoms were at times disposed of in holes dug in the terminal property." Tosco has never found evidence of the disposal of leaded tank bottoms on the property and "quantities are assumed to be small and inconsequential." Tosco notes that, according to the HRS User's Manual, when there is no data for a factor, it should be assigned a value of zero.

As noted, the figure of 5,600 cubic feet is only an estimate of the total capacity of the portion of the waste oil lagoon on Tosco property. Any RCRA waste that is assumed to have been deposited in the lagoon would be present in a much smaller quantity. RCRA listed slop oil emulsion solids make up only a small portion of the waste streams from an oil refinery. Attachment A to these comments contains a table prepared by an EPA contractor delineating the content of waste streams from oil refineries. As the table indicates, the typical waste stream containing slop oil emulsion solids is 40 percent water. Of the remaining 60%, 22.5% is oil and only 37.5% is slop oil emulsion solids. Thus, the 5,600 cubic foot lagoon on Tosco's property could contain a maximum of only 2,100 cubic feet of RCRA listed slop oil emulsion solids. Note that the 2,100 cubic foot figure is the maximum amount of slop oil emulsion solids that could possibly be contained in the lagoon on Tosco property. In reality, the figure should be much lower because other, non-RCRA, wastes were deposited in the lagoon.

Using the maximum figure of 2,100 cubic feet for hazardous waste quantity (i.e., 78 cubic yards) would result in an HRS score of 3 for this factor, reducing the total score (Sm) for the facility from 32.61 to 31.13. In reality, the total quantity of slop oil emulsion solids on the Tosco property is much lower and the site would not qualify for listing on the NPL if an accurate figure could be determined.

C. Petroleum Exclusion

In sum, there is no direct evidence that RCRA wastes were disposed of at the North Market Street site. In fact, there is no evidence that any substances other than petroleum products were disposed of on site. Elevated lead concentrations on site could logically result from leaded gasoline releases. Thus, the site should be exempt from CERCLA coverage under 42 USC § 9601(14) which excludes petroleum products from the definition of hazardous substances.

Comment II: Route Characteristics

A. Depth to Aquifer of Concern

EPA used a "conservative" value of 0 feet for the depth of the hazardous substances. Tosco and its technical consultants agree with EPA that contamination at the site is confined to the near surface area of the site. Review of test pit data from the Washington State Department of Ecology's contractor Golder Associates, Inc. confirms that the depth of any hazardous substances is minimal.

Depth from the ground surface to the highest seasonal water table is reported in the HRS worksheets as 147 feet. Reference 19 of the HRS Scoring package consists of handwritten field logs for Boring B-2 which note a depth to groundwater in the borehole of 147 feet on April 22, 1987. Since this particular boring was not completed as a monitoring well, the single water level reading should not be considered a static water level until a number of measurements are taken on a periodic basis to demonstrate that water levels have stabilized in the borehole.

Data from Golder Associates (1988) provides more reliable water level measurements from monitoring wells installed in June, 1987. Monitoring wells NM-1, NM-3, NM-4 and NM-5 are located on or immediately adjacent to the Tosco property and exhibited the depths to groundwater shown in Table 1.

TABLE 1: Depth to Groundwater Measurements - Golder, 1988 (feet below top of well casing)

1987	NM-1 (feet)	NM-3 (feet)	$\frac{\text{NM-4}}{(\text{feet})}$	NM-6 (feet)
July	161.10	157.35	152.82	155.55
October			154.21	
November	162.34	158.41	153.64	157.55

Each of these measurements is based on the water level depth from the top of the well casing and can be adjusted for the difference between the casing and land surface elevation using geodetic survey results summarized by Golder (1988). The adjusted results are presented in Table 2.

TABLE 2: Adjusted Depth to Groundwater Water Measurements - Golder, 1988 (feet below groundwater surface)

1987	$\frac{NM-1}{(feet)}$	NM-3 (feet)	$\frac{NM-4}{(feet)}$	$(\frac{\text{NM-6}}{\text{feet}})$
July	158.28	154.51	149.91	152.44
October			151.30	
November	159.52	155.57	150.73	154.44

Based on this data, the HRS score should be revised to reflect a depth of over 150 feet to the aquifer. Revising the score for depth to the aquifer to 0 from 1 changes the groundwater route score (Sgw) from 56.41 to 45.13 and the composite score (Sm) for the site from 32.61 to 26.09.

Thus, based on the more accurate groundwater depths reported by Golder, the Site should not be placed on the NPL.

B. Net Precipitation

The reference material used by EPA to predict the amount of seasonal precipitation at the Tosco site was compiled from the Climatic Atlas of the United States using data prepared by the National Oceanic and Atmospheric Administration between 1931 and 1951. These values overestimate the mean total precipitation during the referenced season (November 1 through April 30) by approximately 3/4 of an inch.

Tosco and its technical consultant have reviewed Climate Normals for the United States compiled by the National Climatic Center between 1951 and 1980, and have re-evaluated the seasonal precipitation prediction for the Tosco Spokane Terminal based on this more recent data and more precise representation of the data base. Actual measured precipitation data (Attachment B) in the region in which the facility is located was used. EPA's HRS User's Manual prefers this method for calculating net precipitation.

During the evaluated seasonal period, the measured precipitation is 11.48 inches. The precipitation data were obtained from the Spokane Weather Service Office (N 4738, W 11732, Elevation 2348 feet). The Terminal (N 4743, W 11721, Elevation

2000 feet) is located ten miles northeast of the Weather Service Office, and is well represented by this station.

Tosco's re-evaluation of net precipitation based on more recent data and following EPA's HRS User's Manual Guidance Procedures is 11.48 inches precipitation, minus 6.83 inches evaporation, equaling 4.64 inches. The assigned HRS score should therefore have been 1 and not 2, resulting in a lower total HRS score. The effect of changing this factor lowers the groundwater route score (Sgw) to 50.77 and the composite score (Sm) to 29.35, assuming all other factors remain unchanged.

Comment III: Site Name and Description

EPA refers to the site as "Tosco Corp. (Spokane Terminal)." Such a designation is misleading and inaccurate. The site has long been referred to by area property owners, the public, and the Washington State Department of Ecology (Ecology) as the "North Market Street Site." The site has been called the North Market Street site throughout a lengthy and ongoing remedial investigation overseen by Ecology. Recently the site was referred to as the North Market Street Site in documents generated by Ecology pursuant to the Washington State Hazardous Waste Cleanup Act. Presumably, Ecology will continue to play an active, if not lead agency, role in addressing the site in the future. The public should have confidence that both EPA and Ecology are addressing the same site and that potential contamination is limited to one area. Changing the name of the site at this time will generate needless confusion.

More importantly, the reference "Tosco Corp. (Spokane Terminal)" does not accurately describe the physical boundaries of the site or the geographic location of contaminated areas. The old waste oil lagoon cited by EPA, and forming the primary basis for listing the site, is located only partially on Tosco property. Most of the oil lagoon and contaminated soils are located on property to the north, including the adjoining Draper Tractor property and up the Burlington Northern railroad tracks. Tosco estimates that only one-tenth of the oil lagoon is actually located on Tosco property. Other properties of concern in the area have also been identified by Ecology.

Defining the site as Tosco's property also ignores other parties in the area who may be potentially responsible for any perceived problems at the site. For instance, the Washington Chief Refinery operated for many years across the railroad tracks to the immediate west of the Tosco property. The Midget Oil facility reclaimed used oil in an area next to the Tosco property. Chevron and Yellowstone currently operate pipeline terminals adjacent to the oil lagoon. Burlington Northern had extensive operations in the immediate vicinity over the years. Other property owners maintain underground petroleum tanks in the area. Defining the site as the Tosco property may arbitrarily limit the scope of

investigation of the site and will not encourage other potentially responsible parties to take an active role in investigation of potential problems at the site.

Finally, placing the stigma of a Superfund designation on an innocent landowner such as Tosco is patently unfair. While the name of a Superfund site may have no formal, legal consequence, the designation cannot be expected to foster Tosco's business position or reputation in the community. Tosco never operated the refinery nor placed RCRA wastes in the oil lagoons. Furthermore, contrary to EPA's assertion on the cover sheet to the HRS package, the refinery was moved prior to Tosco's acquisition of the property. Tosco has conducted only terminalling operations at the facility in above ground petroleum storage tanks. Any spills or leaks from these tanks that might be attributable to Tosco would be of free petroleum products excluded from CERCLA coverage under the petroleum exclusion, 42 USC § 9601(14).

Tosco therefore respectfully requests that the site continue to be named the "North Market Street Site" and be defined as an area encompassing all areas of concern and potentially responsible property owners.

IV. Conclusion

In summary, Tosco's Spokane Terminal should not be placed on the National Priorities List. First, the site should be excluded entirely from NPL coverage because the only potential releases at the site are of petroleum products. Second, even if CERCLA covered hazardous substances were released on the site, the small waste quantity, great depth to the aquifer, and current precipitation data indicate that the site does not warrant inclusion on the NPL. Using the figures discussed in these comments, including the highly conservative figure of 3 for hazardous waste quantity, results in a total score for the facility (Sm) of 21.79, well below the NPL listing threshold.

Furthermore, Tosco plans to fully address contamination on its property regardless of whether the site is listed on the NPL. Department of Ecology is also addressing the site under state law independent of any NPL listing. Currently, Tosco is continuing efforts begun prior to the NPL nomination to complete the remedial investigation of the North Market Street Site with the cooperation of Ecology and other potentially responsible parties. State law mandates a thorough remediation that will meet standards virtually identical to federal standards. State law covers a breadth of contaminants (including petroleum) not regulated by CERCLA. the North Market Street Site can and will be fully addressed without federal involvement through an NPL listing. Listing the site on the NPL will have little effect aside from placing a stigma Tosco and doubling the bureaucratic burden on potentially responsible parties.

Please contact the undersigned if you have any questions or require additional information.

Very truly yours,

HELLER, EHRMAN, WHITE & MCAULIFFE

Ralph H. Palumbo R. Paul Beveridge

Of Counsel to Tosco Corporation

RPB/amp 3-193 Attachments

U.S. DEPARTMENT OF COMMERCE National Technical Information Service

PB-259 097

ASSESSMENT OF HAZARDOUS WASTE PRACTICES IN THE PETROLEUM REFINING INDUSTRY

JACOBS ENGINEERING Co.

PREPARED FOR
U.S. ENVIRONMENTAL PROTECTION AGENCY

JUNE 1976

TD 883 J1 Kerosene Filter Clays and Lube Oil Filter Clays - Treatment with fixed bed clay is used to remove color bodies, chemical treatment residues, and traces of moisture from product streams such as gasoline, kerosene, jet fuel, and light fuel oil. Clay is also used to treat lube oils, a process in which the clay is mixed with the oil and subsequently removed with a rotary vacuum filter. Since clay is used in treatment of highly refined products, the spent clay from either of the above processes is reasonably free of oil and can be disposed of in a landfill. Various clay treatment processes are discussed in Appendix H. Spent clay is produced in significantly greater quantities from the clay contacting process than from the fixed bed process.

Once-Through Cooling Water Sludge - Water pumped from a nearby source is passed through primary settling tanks prior to usage for once-through cooling. Sludge is periodically removed from these tanks.

Dissolved Air Flotation Float - In some refineries, following processing by separators, additional oil and solids are removed by the process of dissolved air flotation. The process takes place in a circular tank with or without chemicals, bringing the finely divided solids and oil particles to the surface, where they are skimmed off for disposal.

Slop Oil Emulsion Solids - Skimmed oil from the API separators is usually pumped into a slop oil tank where the mixture is separated into three fractions - oil, water and emulsion. The oil is returned for reprocessing, and the water is recycled back to the API separator. The emulsic layer may be disposed of as a sludge, or it may be further treated, i.e., demulsified. Demulsification is carried out by chemical or by physical treatment. The former employs the use of special agents, heat and settlin tanks. The latter involves removal of suspended solids by centrifugation of vacuum filtration, while water and oils are effectively resolved in settling tanks. In either process, the oil is reprocessed, the water is returned to the wastewater treatment system, and the solids are disposed of as a solid waste.

Spent Lime from Boiler Feedwater Treatment - Spent lime from cold or hot lime softening and from the clarification of boiler feed water is continuously discharged, de-watered in a settling basin, and disposed of to land. The quantities and composition of the spent lime sludges are dependent upon the characteristics of the raw makeup water.

TABLE 37 (continued)

FACTORS AFFECTING THE COMPOSITION AND QUANTITY OF SPECIFIC SOLID WASTE STREAMS

•			. ' .'	•	
Waste					
Neutralized	HF al	kylat	ion slu	idge	
***			•	131	
					,
		•			
					* *
		. '			
Spent filter	clays	*			
			•	* •	
				, .	
				. *	
	• •				
	1.1		45.		
0	h1		ater s	Indge	
One-throug	n coor	TITE M	arcz, ș	rang -	
	,			,	
		- 7			
DAF float					
DAE HOAT		٠,		٠	•
			•	*	
					•

Slop oil emulsion solids

Composition and Quantity	
Composition of fresh HF acid	
Composition of lime	,
Feedstock composition	
Process operating conditions .	
HF alkylation process metallur	gy
Sign of HF alkylation unit	

Factors Affecting

Type and number of clay treating processes used
Type and number of products treated
Composition and quantity of products treated
Type and amount of clay used
Refinery size

Composition and quantity of raw water Cooling system metallurgy Size and nature of process leaks Refinery size and complexity

Same factors as API separator sludge plus:

Residence time

Amount and time of flocculating

chemical used

Efficiency of API separator

Composition and quantity of individual oil spills and oil leakages

Composition of wastewater emulsions

Nature of emulsion breaking treatment and degree of success Refinery size and complexity Quantity of oil in wastewater

and degree of removal

TABLE 41

TOTAL QUANTITIES OF FACH COMPONENT IN EACH WASTE STREAM
GENERATED IN THE UNITED STATES IN 1974
Metric Tons (dry weight)

1	Neutralized		FCC Catalyst	Lube Oil	API Separator Sludge	Non-Leaded Tank Bottoms	Slop Oil Emulsion Solids	Once-through Cooling Water Sludge	Waste Bio Sludge	Shorm Water Silt	Speat Lime from Boiler Feedwater Treatment
Component	tion Sludge	Coke Fines			1.1	0.2	0.5	0.08	0.4	0.3	1, 62
Phenol	0.2	0.007	0.07	0.3		. 0.6		0.004	.	0.02	0.0008
Cyanide	0.4	* 1	0.005	0.012		1.0	0.007	0.06	0.0008	0.05	0.008
Selenium (Se)	0.92		0.0003	0.1	0.07	0.0006	0.3	0.02	0.3	5.0	0.08
Arsenic (As)	0.04	0.0005	0.06	0.07	0.4		0.02	0.02	0.2	9.01	0.02
	0.001			0.92	0.03	0.03		0.01		0.00006	0.001
Mercary (Hg)	0.001		0.02	0.02	0,0002	0.02		1.5	p.004	2.1	0.04
Beryllium (Be)	0.01	1.6	7.4	3.0	0.7	1.8	0,8	2.4	22.0	10.2	1.71
Vanadium (V)	0.006		2,6	2.1	17.6	1.1	17.7	9,2	0.02	0.3	0.004
Chromium (Cr)		0.01	0.2	0.3	0.4	0.6	0.3		0.002	2,4	1.9
Cobalt (Co)	0.006	2.0	7.4	1.0	1,3	2.2	1.7	1.3	0.8	0.8	3.0
Nickel (Ni)	0.9		0.5	0.4	1.4	7,1	1.1	5,7		6.9	8.5
Copper (Cu)	0,2	0.01	1.6	5.4	20.7	0.2	8.4	4.7	9.9	0.01	0.2
Zinc (Zn)	0.2	0.05	0.06	0.05	0.04	0.05	0.01	0.02	0.02	0.007	0.002
Silver (Ag)	0.005	*		0.07	0.03	0.93	0.004	0.0001	0.02	1	3.0
Cadmium (Cd)	0.001	0.004	0.004	0.1	1.2	2,1	0.06	2.1	0.4	1.6	0.02
Lead (Pb)	0.1	0.05	1.5		0.3	0.8	0.02	0.1	0.2	0.2	
Molybdenum (Mo)		0.0003	0.2	0.004		0.2	0.3	0.2	2.4	0.03	0.01
Ammoutum Salts	*		* .	0.2	0.4						
(as NH4)	810.0					•	9×10	0,0001	0.0002	0.04	0.002
Fluoride	2×10-5		1,4x10-4	0.009	0.0003	0.05	7210		-		
Bens-A-Pyrene	-				45.7	18.1	31.2	18.4	36.7	25.2	20.1
Total Wgt. of Hazar ous Components	812	3.7	21,6	13, 1	77.1						
	-			1		1		1		33. (35	320,000
Total Wgt. Hazardos Componenta PLUS	o.a			F1 250	32, 670	68, 470	20,300	28, 130	10,580	22, 625	2,500
Inert Solids	7,670	3,470	31,000	51,250	24,900	53, 200	12,180	161	Z28	1,145	322, 500
Total Weight Oil	1,200	0.04	64.9	3, 627	57,570	121,670	32,480	28, 290	10,800	23,770	
Total Dry Weight	8,870	3, 470	31,070	54, 880	_	-	40	25	87	25	59
% Water	54	0	0	45	53	18					

a Less than 1 lb/yr

108

Climate Normals for the U.S. (Base: 1951-80)

First Edition

Data Elements Compiled by
National Climatic Center
Environmental Data and Information Service
National Oceanic and Atmospheric Administration

JUL 11 1985

CONTRA COSTA COUNTY LIERARY

Gale Research Company Book Tower • Detroit, Michigan 48226

Station Names

Figures and letters following the station name indicate a rural location, and refer to the distance and direction of the station from the nearest post office. WSO, WSMO, AND WSFO denote a Weather Service Office, a Meteorological Observatory, and a Forecast Office, respectively. Station elevations are in feet above mean sea level. "R" or "6" denotes a recording gage. "//" indicates a wind shield is affixed to the gage.

Pacific Stations

Stations located on islands other than Hawaii generally have short records (i.e., less than 30 years) and did not meet the criteria for computation of normals. Short-term or period averages are given for these stations.

Maps

Maps show the locations of stations for which 1951-80 normals have been prepared.

Degree Day Normals*

The usual arithmetical procedures were not applied to obtain the heating and cooling degree day data. The rational conversion formulae developed by Thom (1) and (2) allow the properly adjusted mean temperature normals to be coverted to degree day normals with uniform consistency. In some cases this procedure will yield a small number of degree day values that are unexpected. These cases occur when the standard deviations are computed from a mixed distribution as frequently occurs during the transition months. The unexpected values are low and unimportant for most applications of degree day data.

The general concept of heating and cooling degree days is discussed on pages 711-12.

45 - WASHINGTON

LEGEND

11 = TEMPERATURE ONLY
12 = PRECIPITATION ONL
13 = TEMP. & PRECIP.

STATE-STATIC		NAME		13 = TEMP	& PRECIP.
NUMBER 45-0008	TYP		LATITUDI DEG-MIN	DEG-MIN	ELEVATION (FT)
45-0013 45-0176 45-0184 45-0257	13 12 13 12 12	ABERDEEN ABERDEEN 20 NNE ANACORTES ANATONE ARLINGTON	// N 4658 // N 4716 N 4831 N 4608 N 4812	W 12349 W 12342	10 435 30 3570
45-0482 45-0564 45-0574 45-0668 45-0729	13 13 13 13	BATTLE CROUND	N 4608 N 4812 N 4547 N 4847 N 4848 N 4600	W 12232 W 12232 W 12232 W 12018	295 140 150 3000
45-0872 45-0945 45-1233 45-1276 45-1350	13 13 13 13	BREMERTON BUCKLEY 1 NE CEDAR LAKE CENTRALIA CHELAN	N 4900 N 4734 N 4710 N 4725 N 4643 N 4750	W 12240 W 12200 W 12144 W 12257	162 685 1560
45-1395 45-1400 45-1414 45-1484 45-1496	13 13 13 13	CHEWELAH 4 SSW CHIEF JOSEPH DAM CHIMACUM 4 S CLEARBROOK CLEARWATER		W 12002 W 11745 W 11939 W 12246 W 12220 W 12418	1120 1675 810 250 64 75
45-1504 45-1586 45-1650 45-1666 45-1679	13 13 13 12 13	CLE ELUM COLFAX 1 NW COLVILLE AP CONCONULLY CONCRETE	N 4711 N 4653 N 4833 N 4834 N 4833	W 12057 W 11723 W 11753 W 11945 W 12146	1930 1955 1885 2275
45-1691 45-1767 45-1783 45-1968 45-1972		CONNELL 12 SE COULEE DAM 1 SW COUPEVILLE 1 S DALLESPORT FAA AIRPORT DALLESPORT 9 N	N 4630 N 4757 N 4812 N 4537 N 4545	W 11846 W 11900 W 12242 W 12109 W 12109	195 1078 1630 50 222 1919
45-2007 45-2030 45-2157 45-2220	13 D 13 D 12 D	DARRINGTON RANGER STA DAVENPORT DAYTON 1 WSW DIABLO DAM DOTY 3 E	N 4815 N 4739 N 4619 N 4843 N 4638	W 12136 W 11809 W 11800 W 12109 W 12312	550 2460 1557 891 260
45-2493 45-2531 45-2548 45-2614 45-2675	13 E 13 E 13 E 13 E	LECTRON HEADWORKS LMA LWHA RANGER STATION PHRATA FAA AIRPORT VERETT	N 4654 N 4700 N 4802 N 4718 N 4759	W 12202 W 12324 W 12335 W 11932	1730 68 360 1259 60
45-2914 45-3160 45-3177 45-3284 45-3357	13 FG 12 GI 13 GI 13 GF 12 GF	DRKS 1 E LACIER RANGER STATION LENOMA 1 W RAPEVIEW 3 SW REENWATER		W 12422 W 12157 W 12210 W 12252 W 12138	350 935 870 30
45-3502 45-3529 45-3546 45-3807 45-3975	12 HA 12 HA 13 HA	RRINGTON 5 S RTLINE TTON 9 ESE QUIAM FAA AIRPORT ENE MT WAUCONDA	N 4725 N 4741 N 4645 N 4658	W 12138 W 11815 W 11906 W 11839 W 12356 W 12356	1730 2167 1910 1430 14 2700
					- 00

45 - WASHINGTON

LEGEND

11 = TEMPERATURE ONLY
12 = PRECIPITATION ONLY
13 = TEMP. & PRECIP.

				o - I Linii . o	CINECII.
STATE-STATION NUMBER	STN TYP	NAME	LATITUDE DEG-MIN	LONGITUDE DEG-MIN	ELEVATION (FT)
45-4077 45-4154 45-4169 45-4201 45-4338	12 13 13 13	KAHLOTUS 4 SW KENNEWICK KENT KID VALLEY LACROSSE 3 ESE	N 4636 N 4613 N 4723 N 4622 N 4648	W 11836 W 11908 W 12216 W 12237 W 11749	1340 392 32 690 1546
45-4446 45-4486 45-4549 45-4572 45-4679	12 13 13 12 13	LAKE WENATCHEE LANDSBURG LAURIER LEAVENWORTH 3 S LIND 3 NE	N 4750 N 4723 N 4900 N 4734 N 4700	W 12048 W 12158 W 11814 W 12040 W 11835	2005 535 1644 1128 1630
45-4769 45-5224 45-5387 45-5425 45-5525	13 13 12 12	LONGVIEW MC MILLIN RESERVOIR MILL CREEK DAM MINERAL MONROE	N 4610 N 4708 N 4605 N 4643 N 4751	W 12255 W 12216 W 12216 W 12211 W 12159	12 579 1175 1480 120
45-5613 45-5659 45-5688 45-5704 45-5774	13 13 13 13	MINERAL MONROE MOSES LAKE 3 E MOUNT ADAMS RANGER STA MOXEE CITY 10 E MUD MOUNTAIN DAM NASELLE 1 ENE	N 4707 N 4600 N 4631 N 4709 N 4622	W 11912 W 12132 W 12010 W 12156 W 12347	1208 1960 1550 1308 35
45-5801 45-5832 45-5840 45-5844 45-5946	12 12 13 13	NESPELEN 2 S NEWHALEM NEWPORT NORTHPORT	N 4822 N 4808 N 4841 N 4811 N 4855	W 12437 W 11859 W 12115 W 11703 W 11747	15 1890 525 2135 1350
45-6011 45-6039 45-6096 45-6114 45-6123	13 13 13 13	OAKVILEE ODESSA OLGA Z SE OLYMPIA WSO R OMAK 2 NW	N 4650 N 4720 N 4837 N 4658 N 4826	W 12313 W 11840 W 12248 W 12254 W 11932	85 1540 80 195 1228
45-6215 45-6295 45-6534 45-6563 45-6584	13 13 12 12 12	OTHELLO 6 ESE PALMER 3 ESE PLAIN PLEASANT VIEW POINT GRENVILLE	N 4648 N 4718 N 4747 N 4631 N 4718	W 11903 W 12151 W 12039 W 11820 W 12417	1190 920 1940 1665 100
45-6610 45-6624 45-6678 45-6768 45-6789	13 13 12 13 13	POMEROY PORT ANGELES PORT TOWNSEND PROSSER 4 NE PULLMAN 2 NW	N 4628 N 4807 N 4807 N 4615 N 4646	W 11737 W 12326 W 12245 W 11945 W 11712	1810 99 100 903 2545
45-6803 45-6846 45-6858 45-6880 45-6896	13 13 13 13	PUYALLUP 2 W EXP STA QUILCENE 2 SW QUILLAYUTE WSO QUINCY I S RAINIER OHANAPECOSH	N 4712 N 4749 N 4757 N 4713 N 4644	W 12220 W 12255 W 12433 W 11951 W 12134	50 123 179 1274 1950
45-6898 45-6909 45-6974 45-7015 45-7059	13 12 13 13	RAINIER PARADISE RS // RANDLE 1 E REPUBLIC RICHLAND RITZVILLE 1 SSE	N 4647 N 4632 N 4839 N 4617 N 4707	W 12144 W 12156 W 11844 W 11917 W 11822	5427 900 2610 357 1830
		·			

45 - WASHINGTON

LEGEND

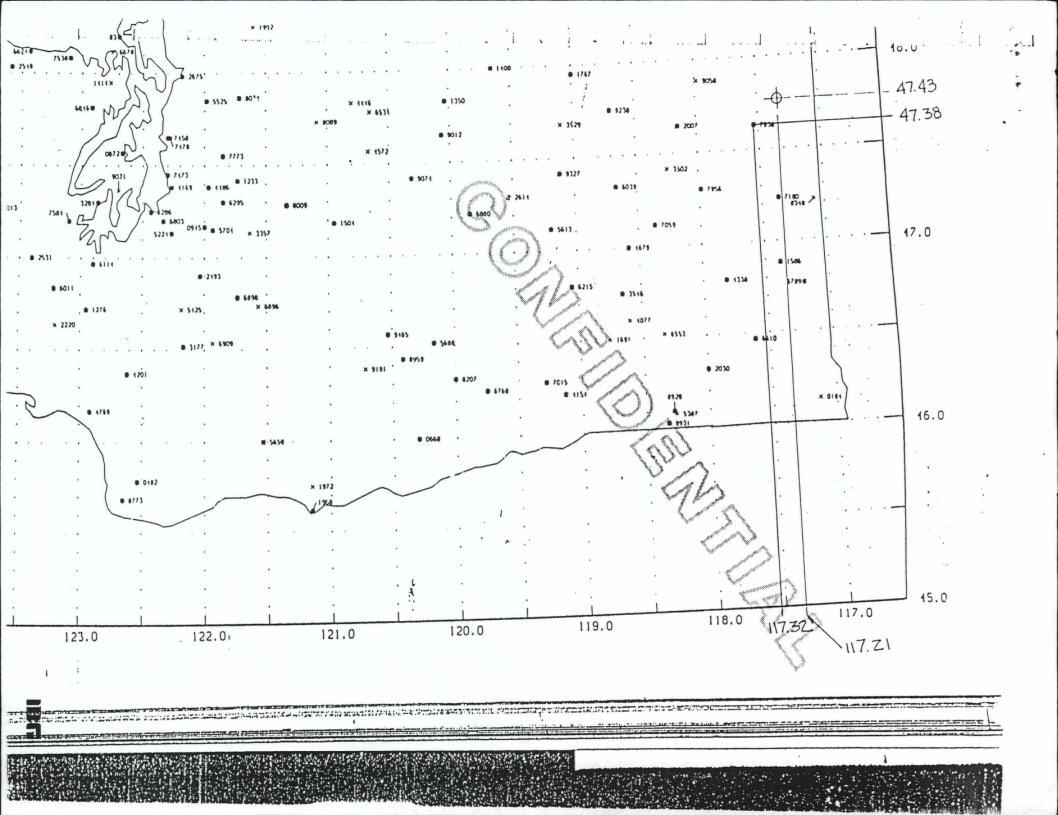
11 = TEMPERATURE ONLY
12 = PRECIPITATION ONLY
13 = TEMP. & PRECIP.

					-			
	STATE-STATION NUMBER	STN TYP	NAME		LATITUDE . DEG-MIN	LONGITUDE DEG-MIN	ELEVATION (FT)	
	45-7180 45-7319 45-7458 45-7473 45-7478	13 12 13 13	ROSALIA SAPPHO 8 E SEATTLE EMSU WSO SEATTLE-TACOMA WSO SEATTLE U OF W	R	N 4714 N 4804 N 4739 N 4727 N 4739	W 11722 W 12407 W 12218 W 12218 W 12217	2400 760 20 400 96	
	45-7507 45-7538 45-7584 45-7773 45-7938	13 13 13 13	SEDRO WOOLLEY SEQUIM SHELTON SNOQUALMIE FALLS SPOKANE WSO	//R	N 4830 N 4805 N 4712 N 4733 N 4738	W 12214 W 12306 W 12306 W 12151 W 11732	50 180 22 440 2349	
	45-7956 45-7987 45-8009 45-8034 45-8059	13 12 13 13 13	SPRAGUE SPRUCE STAMPEDE PASS WSO STARTUP LE STEHEKIN 3 NW	//R	N 4718 N 4748 N 4717 N 4752 N 4820	W 11759 W 12404 W 12120 W 12143 W 12042	1930 365 3958 170 1150	
	45-8089 45-8207 45-8286 45-8348 45-8773	12 13 13 12 13	STEVENS PASS SUNNYSIDE TACOMA CITY HALL TEKOA VANCOUVER 4 NNE		N 4744 N 4619 N 4715 N 4713 N 4541	W 12105 W 12000 W 12226 W 11705- W 12239	4070 747 267 2610 210	
	45-8928 45-8931 45-8959 45-9012 45-9021	13 13 13 13 12	WALLA-WALLA FAA AP WALLA WALLA WSO WAPATO WATERVILLE WAUNA 3 W	R	N 4606 N 4602 N 4626 N 4739 N 4722	W 11817 W 11820 W 12025 W 12004 W 12242	1170 949 850 2620 17	
304	45-9058 45-9074 45-9191 45-9238 45-9291	12 13 12 13 13	WELLPINIT WENATCHEE WHITE SWAN R. S. WILBUR WILBUR WILLAPA HARBOR		N 4753 N 4725 N 4623 N 4745 N 4641	W 11759 W 12019 W 12043 W 11842 W 12345	2450 634 970 2160 10	
:	45-9327 45-9376 45-9465	13 13 13	WILSON CREEK WINTHROP 1 WSW YAKIMA WSO	//R	N 4725 N 4828 N 4634	W 11907 W 12011 W 12032	1276 1755 1064	

WASHINGTON

PRECIPITATION NORMALS (INCHES)

	T -	HELI	PITA	100	NORM	ALS	(INC)	HES)					
STATION	JAN	FEB	MAR	APR	MAY	JUN	JL	AUG	SEP	OCT	NOV	DEC	01.
LAKE MENATCHEE LANDSBURG LAURIER LEAVENMORTH 3 S LIND 3 NE	8.30 7.93 2.20 5.15	4.60 5.93 1.46 2.95	3.09 5.30 1.35 2.15	1.63 4.30 1.38	1.10 3.20 1.89	. 93 2. 99 1.86	1 49	777	1.28	3.34	5.94 7.48	8.27 8.71	39 57
LONGVIEW MC MILLIN RESERVOIR MILL OREFE TOWN	1.11 6.96 6.00 2.22	. 83 4.41 4.28	.71 4.48 3.76	1.14 .68 3.30 3.04	2 36	1.99	1.15 31 27	1.58	2.21	1.33 1.80 .75	1.84 4.08 1.18	2.38 5.24 1.31 7.65	19 25 9
MINERAL LEN DAY MONROE MOSES LAKE 3 E MOUNT ADAMS RANGER STA	13.73	1.45 9.31 4.89	1.66	1.59 5.49 3.57		2.82	. 89 . 44 1.29 1.28	1.64	2.21 .98 3.16 2.83	3.56 1.50	5.66	6.20 2.32 13.21 6.87	46. 41. 17. 80. 48.
MUO MOUNTAIN DAM NASELLE 1 ENE	9.14 1.00 7.08	5.24	166	2:25	1.29	. 57 . 92 . 65 3 . 75	. 26 . 30 . 26 1 . 58	. 35 . 86 . 49 2.54	1.40 1.43 3.46	.55 3.62 .58 4.73	. 99 7.11	1.17 8.54 .99	7.7 45.4 7.8
	2.51	2.23 1.06	0.27 .89 7.17	6.91 .96	3.73 1.27 3.05	2.80	. 5 3	. 65	4.74	9.92 1 0.22 1	5.96 1 4.33 1	7.50 1	55.3 15.1 03.3 12.8
OAKVILLE	2.33 1 9.82 6 1.29	. 64 1	.35 1 .04 3	.68 2	1.87 1	.76	. 93	1.29	1.32	.41	1.45 14 3.55 2.11	4.37 4.20 2.65	81.58 27.96 20.06
OMAK 2 Ni	.12	.77 4	.85 3	.91 1	. 45 . 85 1	. 4 4	. 96 1	. 34 2	.75 2	.66 1 .91 3	.31 1 .85 4 .58 8	.49 .53 2 .70 5	8.27 9.80 9.44 0.96 2.03
PLEASANT VIEW	.45 3.	41 9. 29 2. 18 1.	01 7.	71 5. 14 91	.57 5. 84 96	24 2. 72 86	38 3 34 28	. 28 5 . 68 . 53	30 7. 80 1. 62	59 11 96 4	28 5.	67 27	7.80
PORF ANGELES PORT TOWNSEND PROSSER 4 NE PULMAN 2 NE 1.		74 2.	12 1.	18 1. 32 . 51 1.	27 1. 89 . 44 1.	07	42 .		73 1. 26 2.	75 12. 18 1. 44 3.	60 13. 71 2. 77 4.	80 89 23 15 25 25	.74
PUYALLUP 2 W EXP STA GUILCENE 2 SW GUILLAYUTE WSO GUINCY 1 5 15.0	37 6.6	3.8	1 2.8 1 3.3	2 1.8 8 2.8	52 1.6 32 1.6 13 2.2	3 .8	11 1.4	33 95	36 99 1.6	64 2.6	58 1. 64 3.	15 7 07 21.	. 75 . 70 . 32
RAINIER PARADISE RS // 18.4 RANDLE 1 E REPUBLIC 9.4	99 .7 29 8.7 4 13.11	7 7.1	9 4.5	2 .5	8 .5	6 2.3	2 2.8 6 .3 7 1.8	5 5.2 6 .3 9 3.3	7 10.5	1 13.9	4 16.3	55.	63 49 85
RICHLAND RITZVILLE 1 SSE ROSALIA	0 1.30	1.19	1.09	1.6	2.5	.84	1 1.8	2 . 9	5.0	1.5	2 2.1	16.	69
SAPPHO 8 E 2.3* SEATTLE EMSU WSO SEATTLE-TACOMA WSO R 6.04 5.24	11.66 4.20 4.22	10.05 3.70 3.59	6.50	1.48	1.32	. 5 1 1 . 8 6 . 8 9	. 85 2.47 1.38	.80 4.62 2.03	1.34	2.01 13.80	2.42 15.86	11.3 17.3 97.6	7 4
SEDRO WOOLLEY SEQUIM SHELTON SNOGHALMIF FALLS	3.79 4.64 1.37 7.78	3.46 3.99 1.31	3.56 1.06	1.52 2.63 .94		.74 .91 1.52		2.02 1.90 3.09	3.43 3.03 4.35	5.60 4.92 5.77	6.33	38.6	0
SPOKANE HSO //R 9.07 2.47	6.49	6.80 5.97 1.36	4.12 4.50 1.08	2.03 3.21 1.38	1.61	.92 1.43 .50	1.38	.97 2.61 3.17 .71	1.37 5.78 5.19 1.08	2.20 9.72 8.13 2.06	2.50 11.45 9.54 2.49	16.39 65.60 61.37	9
				- 1	1		- 1		- 1		-		


PRECIPITATION NORMALS (INCHES)

		F	UCCI	PIIA	TON	NONT	HLS	INCF	1521					
STATION		JAN	FEB	MAR	APR	MAY	JUN	ш	AUG	SEP	OCT	NOV	DEC	ANN
RAGUE RUCE STAMPEDE PASS WSO STARTUP 1 E SEHEKIN 3 NW	//R	2.07 19.71 14.59 8.68 5.99	15.62 10.19 6.20	13.91 8.88 5.93	8.76 6.28 5.31	5.38 3.97 4.31	3.71	2.38 1.56 1.99	3.32	6.00 4.65 3.84	12.92	17.94 12.14 8.02	22.12 15.88 9.18	131.77 92.57 % 65.45
EVENS PASS SUNNYSIDE TACOMA CITY HALL TEKOA NCOUVER 4 NNE	, '	14.18 1.03 5.74 2.70 6.71	.56	. 42 3.38 1.66	. 51	.53 1.48	.45 1.31	1.25 .20 .75 .67		.37 1.95 .98	6.63 .49 3.27 1.51	.83	6.02	6.70 37.17 20.04
ULLA-HALLA FAA AP VALLA HALLA HSO VAPATO VERVILLE VAA 3 H	R	2.42 2.12 1.20 1.50 8.65	1.59 1.40 .64 .91 6.24	1.66 1.41 .56 .73 5.37	1.59 1.35 51 .76 3.25	1.40 .45 .82	1.04 .93 .53 .77	. 42 . 35 . 19 . 30	. 82 . 71 . 36 . 76 . 76	34	1 .54 1 .40 .43 .72 4 .50	2.29 1.87 .93 1.39 7.47	2 . 48 2 . 19 1 . 10 1 . 70 8 . 8 2	15.96 7.24 10.87
ELLPINIT ENATCHEE ITE SHAN R. S. BUR LLAPA HARBOR		2.50 1.37 1.74 1.44 13.71	1.75 .85 .92 1.02 10.03	1.52 .60 .68 .94 9.38	1.48 .62 .50 .87 5.96	1.74 .55 .36 1.18 3.53	1.09 53 37 88 2.86	.73 .15 .24 .45	.66 .28 .70 2.17	. 28	1.23 .57 .48 .87	2.47 1.15 1.18 1.58 11.20	2.98 1.45 1.68 1.68	
HILSON CREEK HITHROP 1 HSH (IMA HSO	//R	1.11 2.35 1.44	. 78 1 . 40 . 74	.70 .89 .65	. 50 . 50	.78 .83 .48	.59 .83 .60	. 27 . 58 . 14	.38 .83 .36	. 43 . 64 . 33	. 6 1 . 8 2 . 4 7	1.15 1.78 .97	1.36 2.90 1.30	8.76 14.61 7.98
•														
•	10000	7		1										
	_													
1														
*														

ASHINGTON

PRECIPITATION NORMALS (INCHES)

1		ILCII	11/11	1011	1101111	MLJ I	THO	ILJ/					
STATION	JAN	·FEB	MAR	APR	MAY	JUN	JL	AUG	SEP	OCT	NOV	DEC	ANN
ERDEEN 20 NNE // ACORTES ANATONE ARLINGTON	13.10 21.12 3.67 2.43 5.89	16.34	9.06 14.44 2.11 1.82 4.23	8.84 1.70 1.72	4.95 1.32 2.08	3.41 1.25 1.98	2.33	3.18 1.00 1.14	6.37 1.44 1.11	11.97 2.44 1.48	17.86 3.22 2.13	4.04	133.62 25.63 20.49
TTLE GROUND LLLINGHAM 2 N BELLINGHAM FAA AIRPORT BICKLETON TAINE 1 ENE	7.68 4.69 4.79 2.60 5.54	5.17 3.49 3.51 1.56 4.20	5.10 2.97 2.97 1.15 3.39	3.63 2.58 2.43 .80 2.51	2.93 2.08 2.01 .80 1.98	2.34 1.74 1.71 .67 1.81	72 1.15 1.11 .32 1.16	1.45 1.41 .36	2.34 2.18 2.05 .45 2.34	4.56 3.47 3.49 .82	4.61	8.52 5.05 5.14 2.54 6.32	35 46
JEMERTON BUCKLEY 1 NE CEDAR LAKE NTRALIA ELAN	8.25 6.52 14.47 7.38 1.39	5.94 4.79 10.73 4.98 1.03	5.34 4.33 10.24 4.73 .85	2.91 3.91 8.16 3.01	1.78 3.13 5.69 2.03 .62	1.50 2.92 5.15 1.78 .60	.80 1.20 2.35 .84	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	5.53 2.22 52	4.18 4.20 8.77 4.13	7.51	8.93	50.41 48.97 102.41 46.71 10.57
CHEWELAH 4 SSW CHIEF JOSEPH DAM CHIMACUM 4 S EARBROOK EARWATER	2.56 1.19 4.04 5.57 17.33	1.76 1.04 2.88 4.65 14.08	1.64 .75 3.26 3.96 12.94	1.45 .66 2.23 3.39 8.30	1.97 .68 1.92 2.85 5.36	3,36	2.64	1.12 1.57 1.24 2.07 3.39	1.04 .40 1.27 3.23	1.41 .59 2.28 4.68	2.46 1.23 3.38 5.83 16.14	3.12 1.57 4.76 6.47 19.54	20.69 9.75 29.87 46.52 121.24
CLE ELUM COLFAX 1 NW LVILLE AP NCONULLY CANCRETE	4.14 2.74 2.22 1.71 10.34	2.46 1.85 1.45 1.39 7.55	1.91 1.81 1.21 1.19 6.92	4 47	1 62	1.35 1.48 1.21 2.49	.27 .50 .77 .60	.59 .83 1.16 1.20 1.99	.81 .94 .89 .77 3.73	1.63 1.45 1.17 .93 6.70	3.51 2.25 2.05 1.38 9.44	4.59 3.04 2.49 1.89 11.36	22.65 19.80 17.56 14.78 69.43
CONNELL 12 SE LEE DAM 1 SH PEVILLE 1 S LESPORT FAA AIRPORT DALLESPORT 9 N	1.22 1.17 2.55 2.88	.83 .87 1.71 1.48 2.64	1.79	63 .76 1.62 .50	.79 1.09 1.47 .45	.66 .72 1.23 .31	. 24 . 38 . 76 . 08 . 21	.48 .58 1.00 .32 .57	.41 .53 1.30 .38 .76	.76 .65 1.66 .93	1.22 1.26 2.35 2.03 3.45	1.43 1.51 3.00 2.71 4.14	9.46 10.23 20.44 13.17 22.40
FARINGTON RANGER STA LIFENPORT LIFTON 1 MSW DIABLO DAM DOTY 3 E	13.08 1.99 2.60 11.88 9.13	9.68 1.38 1.60 8.69 6.35	8.55 1.33 1.83 6.76 6.29	5.34 1.10 1.47 4.55 3.57	3.41 1.33 1.33 2.79 2.21	2.63 .97 1.19 2.05 1.80	1.51 .59 .45 1.41	2.10 .77 .76 1.83 1.45	4.28 .82 .89 4.14 2.55	1.03	11.14 1.95 2.22 11.49 7.78	2.21	82.73 15.47 18.63 77.07 55.67
I ECTRON HEADWORKS I 1A LLMHA RANGER STATION EPHRATA FAA AIRPORT FYERETT	10.06 11.05 9.27 .99 4.77	6.72 7.79 7.00 .67 3.48	6.07 7.30 5.96 .62 3.52	5.09 4.47 3.08 .53 2.58	3.95 2.52 1.60 .54 2.24	3.37 2.00 1.11 .53 2.06	1.24 1.02 .71 .25 1.08	2.21 1.66 1.21 .28 1.55	3.37 2.91 2.05 .32 2.06	6.12 6.31 5.10 .49 3.19	9.43	10.11 11.14 10.35 1.14 5.22	67.00 67.60 55.83 7.28 36.23
I RKS 1 E GLACIER RANGER STATION GLENOMA 1 W GRAPEVIEW 3 SW (ENWATER	17-99 9:25 9.82 8.63 8.79	14.42 6.86 6.57 6.30 5.62	5.82		4.84 2.89 3.37 1.88 2.88	3.05 2.62 2.78 1.43 2.55	2.29 1.51 .95 .92 1.07	2.78 2.38 1.94 1.31 1.89	3.71	5.57	8.47 8.49 7.50 7.45	9.90	119.06 64.12 64.12 52.27 56.23
I RINGTON 5 S HARTLINE HATTON 9 ESE I JUIAM FAA AIRPORT ENE MT WAUCONDA	1.53 1.24 1.27 10.95 1.19	1.14 .91 .90 8.22 .86	.98 .82 .81 7.71	.91 .75 .71 4.53 1.08	1.08 .93 .84 2.96 1.81	.79 .79 .59 2.09 1.91	. 43 . 41 . 26 1. 22 1. 01	.52 .50 .47 1.78 1.38	.61 .57 .43 3.57 .83	.96 .69 .82 6.66	1.64 1.39 1.27 9.93 1.09	1.72 1.54 1.48 11.60 1.39	12.31 10.54 9.85 71.22 14.30
KAHLOTUS 4 SH KENNEWICK F SIT F SI VALLEY L = ROSSE 3 ESE	1.35 1.17 6.18 8.81 1.92	90 .66 4.23 6.03 1.26	.86 .54 3.77 6.47 1.12	. 74 . 46 2 . 64 4 . 98 . 90	.86 .59 1.75 3.54 .97	.75 .44 1.52 2.84 .90	. 27 . 19 . 81 1. 09 . 39	. 43 . 40 1.34 2.11	.47 .37 2.05 2.75 .60	.81 .56 3.47 5.20 1.02	1.32 .99 5.68 7.29 1.64	1.55 1.18 6.48 9.07 2.17	10.31 7.55 39.92 60.18 13:49
-	. -												

